The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

نویسندگان

  • D. D. Ryutov
  • J. W. Trent
  • Lawrence Livermore
چکیده

A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10 with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen [1] has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features. Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. 1 This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC. UCRL-TR-217980 LCLS-TN-06-1 January 11, 2006

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-thermal atmospheric pressure plasma source design and construction using Argon as the working gas for wound healing

In this research, a non-thermal atmospheric pressure plasma jet device was constructed for skin wound treatment. For this reason, five mice were treated for five consecutive days for 30 s, in a daily manner. Natural wound healing time was monitored and compared with the treated one in 12 consecutive days. The measurement of voltage, current and power waveforms of the plasma source, the optical ...

متن کامل

تولید و بررسی گوی پلاسمایی و تبدیل آن به جت پلاسمای فشار اتمسفری موج‌میکرو

In this work, we first produced microwave plasma ball, then changed the ball into a microwave plasma jet by flowing a working gas through a nozzle. The effect of working gas on the thermal characteristics of the plasma ball and atmospheric pressure microwave plasma jet was investigated. We used resonant absorption scheme by a metallic antenna inside a chamber in which led to the ionization of s...

متن کامل

Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

The growth rate and uniformity of Carbon Nano Tubes (CNTs) based on Chemical Vapor Deposition (CVD) technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon...

متن کامل

Investigation of the effect of Argon flow on the morphology of B4C nanoparticles synthesized by the VLS method

In this paper, new various morphologies of boron carbide were successfully synthesized using carbon black, activated carbon and boron oxide precursors as well as using cobalt nanoparticles as catalysts. Almost the whole morphology of synthesized boron carbide are consisted of smooth nanowires and nanobelts. With decreasing the carbon black particles size from 29 nm to 13 nm (29, 23, 17 and 13),...

متن کامل

ELECTRODE EFFECT ON FLOW CONDITIONS IN ARGON GAS METAL ARE MODELING

A two dimensional mathematical model has been developed for describing the temperature, flow, and electric fields in the are column of the Gas Metal Arc Welding (GMAW) of aluminum in argon shielding gas using axisymmetric Navier-Stokes, Maxwell, and differential thermal energy equations. The predicted results are most sensitive to the cathode spot radius and an optimum cathode spot radius exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006